Electronics, Embedded Systems, and Software are my breakfast, lunch, and dinner.
Mar 19, 2012
So, as usual after I completed my LED case mod I asked myself, how can I could make it even cooler? Thus was born the idea for Case LEDs v. 2.0.
The Idea: Wire up some LEDs so they are controlled by the computer to vary their intensity or something based on the CPU usage.
The Implementation: Using RGB LEDs, some small MOSFETs, and a microcontroller make a USB controlled light generator that takes as input a number representing CPU usage.
In the 3 weeks since I put the white LEDs in my case I have been working on this thing in my spare time (mostly weekends...homework has just been swamping me during the week) and this past weekend I finally got it to connect through the USB using the V-USB library and so I have made a lot of progress. At the moment it is perfectly capable of displaying CPU usage by way of color (it is really cool to watch), but I still want to add a few features before I release the source code (and I also need to test it to make sure it doesn't crash after 2 days or have some horrible memory leak in the host software or something...).
Since I am running linux, the host software was developed linux specific, but later I will add support for Windows since I plan on installing Windows on my computer for gaming at some point. There are two parts to the software: The device firmware and the host software. To minimize USB traffic, the firmware does the conversions from cpu usage to RGB and also the visual efffects. All the host software has to do is read the cpu usage and tell the device about it.
The hardware isn't incredibly complex: It uses an ATMega168A microcontroller (I am going to be aiming for a smaller 14-18 pin microcontroller eventually...this one is just too big and it would be a waste) to control some MOSFETs that turn on and off the LEDs. The LEDs I got were some $0.55 4-PLCC ones from Digikey which I have soldered some wires to and secured with hot glue (my first try looks awful with the hot glue everywhere...the 2nd one looks amazing since I figured out that hot glue melts before heat shrink shrinks so I could put the glue inside the heat shrink). There are 2 MOSFETs per LED channel in a complementary logic configuration. Since the LEDs are common anode, the MOSFETs control the cathode wire and so there isn't an inverting effect (put in a 1, get out a 0 and vice versa) like what usually happens with complementary logic. The whole system runs at 3.3V since I didn't have any 3.6V zener diodes to use for the USB pins to keep the voltage levels in check so that it would be able to talk to the computer. Apparently the voltage levels are very strict for USB and my first few tries of getting this to work didn't communicate with the computer because of the voltage levels coming out of the USB pins. After I changed the voltage to 3.3V it worked perfectly on the first try. Eventually this is going to connect to one of the internal USB connectors on the motherboard with power supplied by the same 4 pin connector I used for my white LEDs. I am debating running it entirely off USB power, but I am still not sure since that would limit any future expansion to 500mA of current draw and with the planned configuration it will be drawing between 250-300mA already.
Anyway...I plan on making a tutorial video of sorts along with pictures and schematics since in reality aside from the programming this was an easy project. I just need a week or two to get all the parts soldered together and the program finalized and then I'll know exactly how much this thing costs to build.